Homework 1

1. Estimating logarithm function(15 points). For $x \in[0,1$), we shall use the identity that

$$
\ln (1-x)=-x-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\cdots
$$

(a) (5 points) Prove that $\ln (1-x) \leqslant-x-\frac{x^{2}}{2}$. Solution.
(b) (10 points) For $x \in[0,1 / 2]$, prove that

$$
\ln (1-x) \geqslant-x-\frac{x^{2}}{2 \cdot 2^{0}}-\frac{x^{2}}{2 \cdot 2^{1}}-\frac{x^{2}}{2 \cdot 2^{2}}-\frac{x^{2}}{2 \cdot 2^{3}}-\cdots=-x-x^{2}
$$

Solution.
2. Tight Estimations(25 points) Provide meaningful upper-bounds and lower-bounds for the following expressions.
(a) (10 points) $S_{n}=\sum_{i=1}^{n} \ln i$, Solution.
(b) $\left(5\right.$ points) $A_{n}=n!$ Solution.
(c) (10 points) $B_{n}=\binom{2 n}{n}=\frac{(2 n)!}{(n!)^{2}}$ Solution.
3. Understanding Joint Distribution($\mathbf{1 5}$ points) Recall that in the lectures we considered the joint distribution (\mathbb{T}, \mathbb{B}) over the sample space $\{4,5, \ldots, 10\} \times\{T, F\}$, where \mathbb{T} represents the time I wake up in the morning, and \mathbb{B} represents whether I have breakfast or not. The following table summarizes the joint probability distribution.

t	b	$\mathbb{P}[\mathbb{T}=t, \mathbb{B}=b]$
4	T	0.01
4	F	0.05
5	T	0
5	F	0.04
6	T	0.1
6	F	0.15
7	T	0.30
7	F	0.12
8	T	0.08
8	F	0.05
9	T	0.03
9	F	0.05
10	T	0.01
10	F	0.01

Calculate the following probabilities.
(a) (5 points) Calculate the probability that I wake up at 8 a.m. or earlier, but do not have breakfast. That is, calculate $\mathbb{P}[\mathbb{T} \leqslant 8, \mathbb{B}=F]$,
Solution.
(b) (5 points) Calculate the probability that I wake up at 8 a.m. or earlier. That is, calculate $\mathbb{P}[\mathbb{T} \leqslant 8]$, Solution.
(c) (5 points) Calculate the probability that I skip breakfast conditioned on the fact that I woke up at $8 \mathrm{a} . \mathrm{m}$. or earlier. That is, compute $\mathbb{P}[\mathbb{B}=F \mid \mathbb{T} \leqslant 8]$.
Solution.
4. Random Walk(20 points). There is a frog sitting at the origin $(0,0)$ in the first quadrant of a two-dimensional Cartesian plane. The frog first jumps uniformly at random along the X -axis to some point $(\mathbb{X}, 0)$, where $\mathbb{X} \in\{1,2,3,4,5,6\}$. Then, it jumps uniformly at random along the Y -axis to some point (\mathbb{X}, \mathbb{Y}), where $\mathbb{Y} \in$ $\{1,2,3,4,5,6\}$. So (\mathbb{X}, \mathbb{Y}) represents the final position of the frog after these two jumps. Note that \mathbb{X} and \mathbb{Y} are two independent random variables that are uniformly distributed over their respective sample spaces.
(a) (5 points) What is the probability that the frog jumps more than 4 units along the Y-axis. That is, compute $\mathbb{P}[\mathbb{Y}>4]$.

Solution.

(b) (5 points) What is the probability that the Euclidean distance of the final position of the frog from the origin is at least 7 . That is compute $\mathbb{P}\left[\sqrt{\mathbb{X}^{2}+\mathbb{Y}^{2}} \geqslant 7\right]$? Solution.
(c) (10 points) What is the probability that the frog has jumped at least 5 units along X -axis conditioned on the fact that the distance of the final position of the frog from the origin is at least 7 ? That is, compute $\mathbb{P}\left[\mathbb{X} \geqslant 5 \mid \sqrt{\mathbb{X}^{2}+\mathbb{Y}^{2}} \geqslant 7\right]$?
5. Coin Tossing Word Problem(15 points). We have three (independent) coins represented by random variables $\mathbb{C}_{1}, \mathbb{C}_{2}$, and \mathbb{C}_{3}.
(i) The first coin has $\mathbb{P}\left[\mathbb{C}_{1}=H\right]=\frac{1}{4}, \mathbb{P}\left[\mathbb{C}_{1}=T\right]=\frac{3}{4}$,
(ii) The second coin has $\mathbb{P}\left[\mathbb{C}_{2}=H\right]=\frac{3}{4}$ and $\mathbb{P}\left[\mathbb{C}_{2}=T\right]=\frac{1}{4}$, and
(iii) The third coin has $\mathbb{P}\left[\mathbb{C}_{3}=H\right]=\frac{1}{4}$ and $\mathbb{P}\left[\mathbb{C}_{3}=T\right]=\frac{3}{4}$.

Consider the following experiment.
(A) Toss the first coin. Let the outcome of the first coin-toss be ω_{1}.
(B) If $\omega_{1}=H$, then we toss the second coin twice. Otherwise, (i.e., if $\omega_{1}=T$) toss the second coin once and then toss the third coin once. Let the two outcomes of this step be represented by ω_{2} and ω_{3}.
(C) Output $\left(\omega_{1}, \omega_{2}, \omega_{3}\right)$.

Based on this experiment, compute the probabilities below.
(a) (5 points) In the experiment mentioned above, what is the probability that a majority of the three outcomes $\left(\omega_{1}, \omega_{2}, \omega_{3}\right)$ are H (head)?
Solution.
(b) (10 points) In the experiment mentioned above, what is the probability that a majority of the three outcomes are H, conditioned on the fact that the first outcome was T ?
Solution.
6. (10 points) Use the fact that $\exp (-x) \approx 1-x$ (when x is small) to show

$$
\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \ldots\left(1-\frac{t-1}{n}\right) \approx\left(1-\frac{(t-1) t}{2 n}\right)
$$

when t^{2} / n is small.
(Remark: You shall see the usefulness of this estimation in the topic "Birthday Paradox" that we shall cover in the forthcoming lectures.)

